Performance Analysis of Neural Network Architecture in Developing Real-Time Malaysian River Water Quality Model

نویسندگان

چکیده

Abstract According to the world health organization, 485,000 people died each year due water-related diseases which are mainly contributed by poor river water quality. As a result, quality monitoring stations have been deployed across world. Unfortunately, complex nature of off-site parameters, index (WQI) cannot be assessed in real-time. This has led significant push for scientific community develop an accurate and robust prediction model. The dynamic nonlinear parameters major challenges traditional machine learning algorithms such as multi linear regression capture. In this study, model was developed using feedforward artificial neural network (FANN) utilizing only on-site parameters. performance different activation functions hidden neurons thoroughly analysed includes rectified unit (ReLU), scaled exponential (SELU), (ELU). Additionally, various initialization optimization were also evaluated maximum efficiency. results shows that FANN-ELU coupled with Glorot technique AdaGrad optimizer outperformed other combinations R 2 value 0.88 mean squared error (MSE) 22.74.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

analysis of power in the network society

اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...

15 صفحه اول

Comparative Analysis of Neural Network Training Methods in Real-time Radiotherapy

Background: The motions of body and tumor in some regions such as chest during radiotherapy treatments are one of the major concerns protecting normal tissues against high doses. By using real-time radiotherapy technique, it is possible to increase the accuracy of delivered dose to the tumor region by means of tracing markers on the body of patients.Objective: This study evaluates the accuracy ...

متن کامل

Neural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features

This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...

متن کامل

Discrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network

Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...

متن کامل

Variations of water quality in the monitoring network of a tropical river

Rapid development and population growth have resulted in an ever-increasing level of water pollution in Malaysia. Therefore, this study was conducted to assess water quality of Selangor River in Malaysia. The data collected under the river water quality monitoring program by the Department of environment from 2005 to 2015 were used for statistical analyses. The local water quality indices were ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IOP conference series

سال: 2022

ISSN: ['1757-899X', '1757-8981']

DOI: https://doi.org/10.1088/1757-899x/1257/1/012022